Self-organizing neural networks for modeling robust 3D and 4D QSAR: application to dihydrofolate reductase inhibitors.

نویسندگان

  • Jaroslaw Polanski
  • Andrzej Bak
  • Rafal Gieleciak
  • Tomasz Magdziarz
چکیده

We have used SOM and grid 3D and 4D QSAR schemes for modeling the activity of a series of dihydrofolate reductase inhibitors. Careful analysis of the performance and external predictivities proves that this method can provide an efficient inhibition model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of QSAR sets with a self-organizing map.

A Kohonen self-organizing map (SOM) is used to classify a data set consisting of dihydrofolate reductase inhibitors with the help of an external set of Dragon descriptors. The resultant classification is used to generate training, cross-validation (CV) and prediction sets for QSAR modeling using the ADAPT methodology. The results are compared to those of QSAR models generated using sets created...

متن کامل

Self-organizing neural network for modeling 3D QSAR of colchicinoids.

A novel scheme for modeling 3D QSAR has been developed. A method involving multiple self-organizing neural network adjusted to be analyzed by the PLS (partial least squares) analysis was used to model 3D QSAR of the selected colchicinoids. The model obtained allows the identification of some structural determinants of the biological activity of compounds.

متن کامل

Application of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors

One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...

متن کامل

Abstract Linear and nonlinear quantitative structure-activity relationship (QSAR) models and docking score functions were developed for dihydrofolate reductase (DHFR) inhibition by cycloguanil derivatives using small molecule descriptors derived from MOE and in silico docking

Linear and nonlinear quantitative structure-activity relationship (QSAR) models and docking score functions were developed for dihydrofolate reductase (DHFR) inhibition by cycloguanil derivatives using small molecule descriptors derived from MOE and in silico docking energies. The best QSAR models and docking score functions were identified when using artificial neural networks optimized by evo...

متن کامل

Quantitative structure-activity relationships by evolved neural networks for the inhibition of dihydrofolate reductase by pyrimidines.

Evolutionary computation provides a useful method for training neural networks in the face of multiple local optima. This paper begins with a description of methods for quantitative structure activity relationships (QSAR). An overview of artificial neural networks for pattern recognition problems such as QSAR is presented and extended with the description of how evolutionary computation can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2004